
Optimization and application of neural network models for accelerated predictive
modelling of NSTX-U

Justin Kunimune, Vaish Gajaraj, Dr. Dan Boyer, and Dr. Michael Zarnstoff
Princeton Plasma Physics Laboratory

Background

Real-time predictive modeling is an important prerequisite to making fusion
reactors reliable and cost-effective. However, physics-based first-principles
models are far too slow for such purposes. Neural networks are much faster,
and almost as accurate, but they have many parameters that must be tuned.
Even if, after tediously adjusting all of the levers, you get a model that works,
how do you know that it’s the best model?

Objectives

• Develop a method of optimising neural network parameters
• Enable the tuning of weights between model speed and fidelity
• Apply it to the NUBEAM code to create an optimally fast and

accurate neural network ensemble

Genetic Algorithm

1 A group of sets of parameters, or
“topologies”, is randomly created.

2 Each topology is evaluated on both
speed and accuracy.

3 The best topologies are randomly bred
to create new topologies.

4 Steps 2 and 3 are repeated a set
number of times.

5 The best topology of the final network
is returned.

35 40 45 50
Execution time (ms)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Co
ef
fic

ie
nt
 o
f d

et
er
m
in
at
io
n

 Gen 0

 Gen 1
 Gen 2

 Gen 3

 Gen 4
 Gen 5

 Gen 6

 Gen 7

 Gen 8
 Gen 9

 Gen 10 Gen 11
 Gen 12

2.0

2.2

2.4

2.6

2.8

Co
st

Figure 1: Progress of algorithm over time.

Figure 2: Passage of genes over
13 generations.

This algorithm mimics
natural selection and
produces optimal neural
network parameters within
20 generations of 20
individuals.

Computation

Each topology can take over 30
minutes to evaluate. Running
many large generations was
therefore infeasible. With the aid
of PPPL’s Unix cluster, though,
each topology of each generation
could be evaluated in parallel,
each submitted via Slurm to a
different CPU. This allowed 24
generations of 20 topologies to be
run in just 12 hours.

Figure 3: The different parts of the algo-
rithm that enabled topologies to be eval-
uated in parallel. Code is blue; files are
orange.

Results

Figure 4: CURB time series comparison.

Figure 5: CURB profile comparison.

Figure 6: CURB predictions vs. values.

Figure 7: CURBS time series compari-
son.

Figure 8: CURBS profile comparison.

Figure 9: CURBS predictions vs. values.

The optimal model

The optimal model, which balances execution time and accuracy, has two
hidden layers of 30 and 66 hidden nodes. It uses higher regularisation and
fewer input variables than similar manually-created network models. It also
uses smaller time-constants in its low-pass filters and different levels of detail
in its profile inputs.
While my models are only marginally better than manually-created ones,
they were generated automatically, without need for time-consuming fid-
dling. This allows physicists to focus on designing datasets and applications
rather than tuning model parameters.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

In
je
ct
ed

 p
ow

er
 [M

W
]

Unfiltered
16ms
26ms
56ms

Figure 10: Low-pass filters used to
represent time dependence.

TE NE Q DIFB
Profile

0

1

2

3

4

5

6

Nu
m
be

r o
f m

od
es

Modes needed to explain 99.5% variance
Modes kept in unoptimised model
Modes kept in optimised model

Figure 11: Number of spatial modes used
to represent each profile.

Figure 12: Comparison of unopti-
mised models with different num-
bers of nodes and optimised models
with different weights.

Acknowledgements

This work was supported
by the US Department of
Energy Grant under con-
tract number DE-AC02-
09CH11466.

Next steps

• Apply genetic algorithm to other
models and problems

• Develop feed-back and feed-forward
methods for controlling plasmas

• Apply control methods to real
fusion devices to manage reactions

References

[1] M. D. Boyer, S. Kaye, D. Liu, K. Erickson, O. Meneghini, and S. Sabbagh,
“Real-time capable neural network approximation of nubeam for use in the
nstx-u control system.” Submitted to European Physical Society Plasma
Physics Conference, 2018.

[2] O. Meneghini, C. J. Luna, S. P. Smith, and L. L. Lao, “Modeling of
transport phenomena in tokamak plasmas with neural networks,” Physics
of Plasmas, vol. 21, 2014.

[3] O. Meneghini, S. P. Smith, P. B. Snyder, G. M. Staebler, J. Candy,
E. Belli, L. Lao, M. Kostuk, T. Luce, T. Luda, J. M. Park, and F. Poli,
“Self-consistent core-pedestal transport simulations with neural network
accelerated models,” Nuclear Fusion, vol. 57, 2017.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.


